Задано число n. Надрукуйте перші n додатних цілих чисел із рівно двома заданими бітами в їх двійковому представленні.
Приклади:
Input: n = 3
Output: 3 5 6
The first 3 numbers with two set bits are 3 (0011)
5 (0101) and 6 (0110)
Input: n = 5
Output: 3 5 6 9 10 12
А Просте рішення полягає в розгляді всіх натуральних чисел одне за одним, починаючи з 1. Для кожного числа перевірте, чи воно має рівно два набори бітів. Якщо число має рівно два встановлені біти, надрукуйте його та збільште кількість таких чисел.
Ан Ефективне рішення це безпосередньо генерувати такі числа. Якщо ми чітко спостерігаємо за числами, ми можемо переписати їх, як наведено нижче pow(21)+pow(20) pow(22)+pow(20) pow(22)+pow(21) pow(23)+pow(20) pow(23)+pow(21) pow(23)+pow(22) .........
Усі числа можуть бути згенеровані в порядку зростання відповідно до старшого з двох встановлених бітів. Ідея полягає в тому, щоб виправити вищий з двох бітів один за іншим. Для поточного старшого встановленого біта врахуйте всі молодші біти та виведіть утворені числа.
C++
// C++ program to print first n numbers // with exactly two set bits #include using namespace std; // Prints first n numbers with two set bits void printTwoSetBitNums(int n) { // Initialize higher of two sets bits int x = 1; // Keep reducing n for every number // with two set bits. while (n > 0) { // Consider all lower set bits for // current higher set bit int y = 0; while (y < x) { // Print current number cout << (1 << x) + (1 << y) << ' '; // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit for current // higher bit. y++; } // Increment higher set bit x++; } } // Driver code int main() { printTwoSetBitNums(4); return 0; }
Java // Java program to print first n numbers // with exactly two set bits import java.io.*; class GFG { // Function to print first n numbers with two set bits static void printTwoSetBitNums(int n) { // Initialize higher of two sets bits int x = 1; // Keep reducing n for every number // with two set bits while (n > 0) { // Consider all lower set bits for // current higher set bit int y = 0; while (y < x) { // Print current number System.out.print(((1 << x) + (1 << y)) +' '); // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit for current // higher bit. y++; } // Increment higher set bit x++; } } // Driver program public static void main (String[] args) { int n = 4; printTwoSetBitNums(n); } } // This code is contributed by Pramod Kumar
Python3 # Python3 program to print first n # numbers with exactly two set bits # Prints first n numbers # with two set bits def printTwoSetBitNums(n) : # Initialize higher of # two sets bits x = 1 # Keep reducing n for every # number with two set bits. while (n > 0) : # Consider all lower set bits # for current higher set bit y = 0 while (y < x) : # Print current number print((1 << x) + (1 << y) end = ' ' ) # If we have found n numbers n -= 1 if (n == 0) : return # Consider next lower bit # for current higher bit. y += 1 # Increment higher set bit x += 1 # Driver code printTwoSetBitNums(4) # This code is contributed # by Smitha
C# // C# program to print first n numbers // with exactly two set bits using System; class GFG { // Function to print first n // numbers with two set bits static void printTwoSetBitNums(int n) { // Initialize higher of // two sets bits int x = 1; // Keep reducing n for every // number with two set bits while (n > 0) { // Consider all lower set bits // for current higher set bit int y = 0; while (y < x) { // Print current number Console.Write(((1 << x) + (1 << y)) +' '); // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit // for current higher bit. y++; } // Increment higher set bit x++; } } // Driver program public static void Main() { int n = 4; printTwoSetBitNums(n); } } // This code is contributed by Anant Agarwal.
JavaScript <script> // Javascript program to print first n numbers // with exactly two set bits // Prints first n numbers with two set bits function printTwoSetBitNums(n) { // Initialize higher of two sets bits let x = 1; // Keep reducing n for every number // with two set bits. while (n > 0) { // Consider all lower set bits for // current higher set bit let y = 0; while (y < x) { // Print current number document.write((1 << x) + (1 << y) + ' '); // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit for current // higher bit. y++; } // Increment higher set bit x++; } } // Driver code printTwoSetBitNums(4); // This code is contributed by Mayank Tyagi </script>
PHP // PHP program to print // first n numbers with // exactly two set bits // Prints first n numbers // with two set bits function printTwoSetBitNums($n) { // Initialize higher of // two sets bits $x = 1; // Keep reducing n for // every number with // two set bits. while ($n > 0) { // Consider all lower set // bits for current higher // set bit $y = 0; while ($y < $x) { // Print current number echo (1 << $x) + (1 << $y) ' '; // If we have found n numbers $n--; if ($n == 0) return; // Consider next lower // bit for current // higher bit. $y++; } // Increment higher set bit $x++; } } // Driver code printTwoSetBitNums(4); // This code is contributed by Ajit ?> Вихід:
foreach машинопис
3 5 6 9
Часова складність: O(n)
часткові похідні в латексі
Допоміжний простір: О(1)
Підхід №2: використання while і join
Підхід полягає в тому, щоб почати з цілого числа 3 і перевірити, чи дорівнює кількість встановлених бітів у його двійковому представленні 2 чи ні. Якщо він має рівно 2 встановлених біта, додайте його до списку чисел із 2 встановленими бітами, доки список не матиме n елементів.
Алгоритм
1. Ініціалізуйте порожній список res для зберігання цілих чисел із рівно двома встановленими бітами.
2. Ініціалізація цілочисельної змінної i до 3.
3. Якщо довжина списку res менше n, виконайте наступне:
a. Перевірте, чи кількість встановлених бітів у двійковому представленні i дорівнює 2 чи ні, використовуючи метод count() рядка.
b. Якщо кількість встановлених бітів дорівнює 2, то додайте i до списку res.
в. Збільште i на 1.
4. Повернути список рез.
java константаC++
#include #include using namespace std; int countSetBits(int num) { int count = 0; while (num > 0) { count += num & 1; num >>= 1; } return count; } vector<int> numbersWithTwoSetBits(int n) { vector<int> res; int i = 3; while (res.size() < n) { if (countSetBits(i) == 2) { res.push_back(i); } i++; } return res; } int main() { int n = 3; vector<int> result = numbersWithTwoSetBits(n); cout << 'Result: '; for (int i = 0; i < result.size(); i++) { cout << result[i] << ' '; } cout << endl; return 0; }
Java // Java program for the above approach import java.util.ArrayList; import java.util.List; public class GFG { // Function to count the number of set bits (binary 1s) // in an integer static int countSetBits(int num) { int count = 0; while (num > 0) { count += num & 1; // Increment count if the last // bit is set (1) num >>= 1; // Right shift to check the next bit } return count; } // Function to generate 'n' numbers with exactly two set // bits in their binary representation static List<Integer> numbersWithTwoSetBits(int n) { List<Integer> res = new ArrayList<>(); int i = 3; // Start from 3 as the first number with // two set bits while (res.size() < n) { if (countSetBits(i) == 2) { // Check if the number has exactly // two set bits res.add( i); // Add the number to the result list } i++; // Move to the next number } return res; } public static void main(String[] args) { int n = 3; // Number of numbers with two set bits to // generate List<Integer> result = numbersWithTwoSetBits( n); // Get the generated numbers for (int num : result) { System.out.print( num + ' '); // Display the generated numbers } System.out.println(); } } // This code is contributed by Susobhan Akhuli
Python3 def numbersWithTwoSetBits(n): res = [] i = 3 while len(res) < n: if bin(i).count('1') == 2: res.append(i) i += 1 return res n = 3 result = numbersWithTwoSetBits(n) output_string = ' '.join(str(x) for x in result) print(output_string)
C# using System; using System.Collections.Generic; class Program { // Function to count the number of set bits (binary 1s) in an integer static int CountSetBits(int num) { int count = 0; while (num > 0) { count += num & 1; // Increment count if the last bit is set (1) num >>= 1; // Right shift to check the next bit } return count; } // Function to generate 'n' numbers with exactly two set bits in their binary representation static List<int> NumbersWithTwoSetBits(int n) { List<int> res = new List<int>(); int i = 3; // Start from 3 as the first number with two set bits while (res.Count < n) { if (CountSetBits(i) == 2) // Check if the number has exactly two set bits { res.Add(i); // Add the number to the result list } i++; // Move to the next number } return res; } static void Main(string[] args) { int n = 3; // Number of numbers with two set bits to generate List<int> result = NumbersWithTwoSetBits(n); // Get the generated numbers Console.Write('Result: '); foreach (int num in result) { Console.Write(num + ' '); // Display the generated numbers } Console.WriteLine(); } }
JavaScript // Javascript program for the above approach // Function to count the number of set bits (binary 1s) // in an integer function countSetBits(num) { let count = 0; while (num > 0) { count += num & 1; // Increment count if the last // bit is set (1) num >>= 1; // Right shift to check the next bit } return count; } // Function to generate 'n' numbers with exactly two set // bits in their binary representation function numbersWithTwoSetBits(n) { let res = []; let i = 3; // Start from 3 as the first number with // two set bits while (res.length < n) { if (countSetBits(i) === 2) { // Check if the number has exactly // two set bits res.push(i); // Add the number to the result list } i++; // Move to the next number } return res; } // Number of numbers with two set bits to generate let n = 3; // Get the generated numbers let result = numbersWithTwoSetBits(n); // Display the generated numbers console.log(result.join(' ')); // This code is contributed by Susobhan Akhuli
Вихід
3 5 6
Часова складність: O(n log n), де n — кількість цілих чисел із рівно двома встановленими бітами. Це тому, що ми перевіряємо кількість встановлених бітів у двійковому представленні кожного цілого числа, що займає O(log n) часу.
Просторова складність: O(n), де n – кількість цілих чисел із рівно двома встановленими бітами. Це тому, що ми зберігаємо список цілих чисел із двома встановленими бітами в пам’яті.