logo

Мінімальна купа в Python

А Min-Heap це повне бінарне дерево, в якому значення в кожному внутрішньому вузлі менше або дорівнює значенням у дочірніх вузлах.
Відображення елементів купи в масив є тривіальним: якщо вузол зберігається за індексом k , тоді його ліва дитина зберігається за індексом 2k+1 і його права дитина за індексом 2k+2 для Індексація на основі 0 і для 1 індексація на основі ліва дитина буде на 2 тис і права дитина буде на 2k+1 .

Приклад мінімальної купи:



 5 13 /  /  10 15 16 31 / /  /  30 41 51 100 41>

Як представлена ​​мінімальна купа?
Мінімальна купа — це повне бінарне дерево. Мінімальна купа зазвичай представляється у вигляді масиву. Кореневий елемент буде at Прибуток[0] . Для будь-якого i-го вузла, тобто Arr[i] :

    Arr[(i -1) / 2] повертає батьківський вузол. Arr[(2 * i) + 1] повертає лівий дочірній вузол. Arr[(2 * i) + 2] повертає правий дочірній вузол.

Операції з мінімальною купою:

    getMin() : повертає кореневий елемент Min Heap. Час Складність цієї операції становить О(1) . extractMin() : видаляє мінімальний елемент із MinHeap. Часова складність цієї операції становить O(Log n) оскільки ця операція потребує підтримки властивості heap (за допомогою виклику heapify()) після видалення root. insert() : вставлення нового ключа займає O(Log n) час. Додаємо новий ключ у кінці дерева. Якщо новий ключ більший за батьківський, нам не потрібно нічого робити. В іншому випадку нам потрібно перейти вгору, щоб виправити порушену властивість купи.

Нижче наведено реалізацію Min Heap у Python –



веб-сервіси Java

Python3






# Python3 implementation of Min Heap> > import> sys> > class> MinHeap:> > >def> __init__(>self>, maxsize):> >self>.maxsize>=> maxsize> >self>.size>=> 0> >self>.Heap>=> [>0>]>*>(>self>.maxsize>+> 1>)> >self>.Heap[>0>]>=> ->1> *> sys.maxsize> >self>.FRONT>=> 1> > ># Function to return the position of> ># parent for the node currently> ># at pos> >def> parent(>self>, pos):> >return> pos>/>/>2> > ># Function to return the position of> ># the left child for the node currently> ># at pos> >def> leftChild(>self>, pos):> >return> 2> *> pos> > ># Function to return the position of> ># the right child for the node currently> ># at pos> >def> rightChild(>self>, pos):> >return> (>2> *> pos)>+> 1> > ># Function that returns true if the passed> ># node is a leaf node> >def> isLeaf(>self>, pos):> >return> pos>*>2> >>self>.size> > ># Function to swap two nodes of the heap> >def> swap(>self>, fpos, spos):> >self>.Heap[fpos],>self>.Heap[spos]>=> self>.Heap[spos],>self>.Heap[fpos]> > ># Function to heapify the node at pos> >def> minHeapify(>self>, pos):> > ># If the node is a non-leaf node and greater> ># than any of its child> >if> not> self>.isLeaf(pos):> >if> (>self>.Heap[pos]>>self>.Heap[>self>.leftChild(pos)]>or> >self>.Heap[pos]>>self>.Heap[>self>.rightChild(pos)]):> > ># Swap with the left child and heapify> ># the left child> >if> self>.Heap[>self>.leftChild(pos)] <>self>.Heap[>self>.rightChild(pos)]:> >self>.swap(pos,>self>.leftChild(pos))> >self>.minHeapify(>self>.leftChild(pos))> > ># Swap with the right child and heapify> ># the right child> >else>:> >self>.swap(pos,>self>.rightChild(pos))> >self>.minHeapify(>self>.rightChild(pos))> > ># Function to insert a node into the heap> >def> insert(>self>, element):> >if> self>.size>>=> self>.maxsize :> >return> >self>.size>+>=> 1> >self>.Heap[>self>.size]>=> element> > >current>=> self>.size> > >while> self>.Heap[current] <>self>.Heap[>self>.parent(current)]:> >self>.swap(current,>self>.parent(current))> >current>=> self>.parent(current)> > ># Function to print the contents of the heap> >def> Print>(>self>):> >for> i>in> range>(>1>, (>self>.size>/>/>2>)>+>1>):> >print>(>' PARENT : '>+> str>(>self>.Heap[i])>+>' LEFT CHILD : '>+> >str>(>self>.Heap[>2> *> i])>+>' RIGHT CHILD : '>+> >str>(>self>.Heap[>2> *> i>+> 1>]))> > ># Function to build the min heap using> ># the minHeapify function> >def> minHeap(>self>):> > >for> pos>in> range>(>self>.size>/>/>2>,>0>,>->1>):> >self>.minHeapify(pos)> > ># Function to remove and return the minimum> ># element from the heap> >def> remove(>self>):> > >popped>=> self>.Heap[>self>.FRONT]> >self>.Heap[>self>.FRONT]>=> self>.Heap[>self>.size]> >self>.size>->=> 1> >self>.minHeapify(>self>.FRONT)> >return> popped> > # Driver Code> if> __name__>=>=> '__main__'>:> > >print>(>'The minHeap is '>)> >minHeap>=> MinHeap(>15>)> >minHeap.insert(>5>)> >minHeap.insert(>3>)> >minHeap.insert(>17>)> >minHeap.insert(>10>)> >minHeap.insert(>84>)> >minHeap.insert(>19>)> >minHeap.insert(>6>)> >minHeap.insert(>22>)> >minHeap.insert(>9>)> >minHeap.minHeap()> > >minHeap.>Print>()> >print>(>'The Min val is '> +> str>(minHeap.remove()))>

>

порівняння рядків

>

Вихід:

The Min Heap is PARENT : 3 LEFT CHILD : 5 RIGHT CHILD :6 PARENT : 5 LEFT CHILD : 9 RIGHT CHILD :84 PARENT : 6 LEFT CHILD : 19 RIGHT CHILD :17 PARENT : 9 LEFT CHILD : 22 RIGHT CHILD :10 The Min val is 3>

Використання функцій бібліотеки:
Ми використовуємо heapq клас для реалізації Heaps у Python. За замовчуванням мінімальна купа реалізована цим класом.

Python3


upcasting



# Python3 program to demonstrate working of heapq> > from> heapq>import> heapify, heappush, heappop> > # Creating empty heap> heap>=> []> heapify(heap)> > # Adding items to the heap using heappush function> heappush(heap,>10>)> heappush(heap,>30>)> heappush(heap,>20>)> heappush(heap,>400>)> > # printing the value of minimum element> print>(>'Head value of heap : '>+>str>(heap[>0>]))> > # printing the elements of the heap> print>(>'The heap elements : '>)> for> i>in> heap:> >print>(i, end>=> ' '>)> print>(>' '>)> > element>=> heappop(heap)> > # printing the elements of the heap> print>(>'The heap elements : '>)> for> i>in> heap:> >print>(i, end>=> ' '>)>

>

тестові випадки junit

>

Вихід:

Head value of heap : 10 The heap elements : 10 30 20 400 The heap elements : 20 30 400>