logo

Найдовший шлях у орієнтованому ациклічному графі | Набір 2

Дано зважений спрямований ациклічний граф (DAG) і вихідну вершину в ньому, знайдіть найдовшу відстань від вихідної вершини до всіх інших вершин у даному графі.

Ми вже обговорювали, як ми можемо знайти Найдовший шлях у спрямованому ациклічному графі (DAG) у наборі 1. У цій публікації ми обговоримо інше цікаве рішення для пошуку найдовшого шляху DAG, яке використовує алгоритм для пошуку Найкоротший шлях у DAG .



Ідея полягає в тому, щоб звести нанівець ваги шляху та знайти найкоротший шлях на графіку . Найдовший шлях між двома заданими вершинами s і t у зваженому графі G — це те ж саме, що найкоротший шлях у графі G', отриманому від G шляхом зміни кожної ваги на її заперечення. Отже, якщо найкоротші шляхи можна знайти в G', то найдовші шляхи також можна знайти в G. 
Нижче наведено крок за кроком процес пошуку найдовших шляхів -

Ми змінюємо вагу кожного ребра даного графа на його заперечення та ініціалізуємо відстані до всіх вершин як нескінченні, а відстань до джерела як 0, тоді знаходимо топологічне сортування графа, яке представляє лінійне впорядкування графа. Коли ми розглядаємо вершину u в топологічному порядку, ми гарантуємо, що ми розглянули кожне вхідне ребро до неї. тобто ми вже знайшли найкоротший шлях до цієї вершини, і ми можемо використати цю інформацію для оновлення найкоротшого шляху всіх її суміжних вершин. Як тільки у нас є топологічний порядок, ми одну за одною обробляємо всі вершини в топологічному порядку. Для кожної вершини, що обробляється, ми оновлюємо відстані до її суміжної вершини, використовуючи найкоротшу відстань поточної вершини від вихідної вершини та її вагу ребра. тобто 

for every adjacent vertex v of every vertex u in topological order if (dist[v] > dist[u] + weight(u v)) dist[v] = dist[u] + weight(u v)

Після того, як ми знайдемо всі найкоротші шляхи від вихідної вершини, найдовший шлях буде просто запереченням найкоротшого шляху.



Нижче наведено реалізацію вищезазначеного підходу:

C++
// A C++ program to find single source longest distances // in a DAG #include    using namespace std; // Graph is represented using adjacency list. Every node of // adjacency list contains vertex number of the vertex to // which edge connects. It also contains weight of the edge class AdjListNode {  int v;  int weight; public:  AdjListNode(int _v int _w)  {  v = _v;  weight = _w;  }  int getV()  {  return v;  }  int getWeight()  {  return weight;  } }; // Graph class represents a directed graph using adjacency // list representation class Graph {  int V; // No. of vertices  // Pointer to an array containing adjacency lists  list<AdjListNode>* adj;  // This function uses DFS  void longestPathUtil(int vector<bool> & stack<int> &); public:  Graph(int); // Constructor  ~Graph(); // Destructor  // function to add an edge to graph  void addEdge(int int int);  void longestPath(int); }; Graph::Graph(int V) // Constructor {  this->V = V;  adj = new list<AdjListNode>[V]; } Graph::~Graph() // Destructor {  delete[] adj; } void Graph::addEdge(int u int v int weight) {  AdjListNode node(v weight);  adj[u].push_back(node); // Add v to u's list } // A recursive function used by longestPath. See below // link for details. // https://www.geeksforgeeks.org/dsa/topological-sorting/ void Graph::longestPathUtil(int v vector<bool> &visited  stack<int> &Stack) {  // Mark the current node as visited  visited[v] = true;  // Recur for all the vertices adjacent to this vertex  for (AdjListNode node : adj[v])  {  if (!visited[node.getV()])  longestPathUtil(node.getV() visited Stack);  }  // Push current vertex to stack which stores topological  // sort  Stack.push(v); } // The function do Topological Sort and finds longest // distances from given source vertex void Graph::longestPath(int s) {  // Initialize distances to all vertices as infinite and  // distance to source as 0  int dist[V];  for (int i = 0; i < V; i++)  dist[i] = INT_MAX;  dist[s] = 0;  stack<int> Stack;  // Mark all the vertices as not visited  vector<bool> visited(V false);  for (int i = 0; i < V; i++)  if (visited[i] == false)  longestPathUtil(i visited Stack);  // Process vertices in topological order  while (!Stack.empty())  {  // Get the next vertex from topological order  int u = Stack.top();  Stack.pop();  if (dist[u] != INT_MAX)  {  // Update distances of all adjacent vertices  // (edge from u -> v exists)  for (AdjListNode v : adj[u])  {  // consider negative weight of edges and  // find shortest path  if (dist[v.getV()] > dist[u] + v.getWeight() * -1)  dist[v.getV()] = dist[u] + v.getWeight() * -1;  }  }  }  // Print the calculated longest distances  for (int i = 0; i < V; i++)  {  if (dist[i] == INT_MAX)  cout << 'INT_MIN ';  else  cout << (dist[i] * -1) << ' ';  } } // Driver code int main() {  Graph g(6);  g.addEdge(0 1 5);  g.addEdge(0 2 3);  g.addEdge(1 3 6);  g.addEdge(1 2 2);  g.addEdge(2 4 4);  g.addEdge(2 5 2);  g.addEdge(2 3 7);  g.addEdge(3 5 1);  g.addEdge(3 4 -1);  g.addEdge(4 5 -2);  int s = 1;  cout << 'Following are longest distances from '  << 'source vertex ' << s << ' n';  g.longestPath(s);  return 0; } 
Python3
# A Python3 program to find single source  # longest distances in a DAG import sys def addEdge(u v w): global adj adj[u].append([v w]) # A recursive function used by longestPath.  # See below link for details. # https:#www.geeksforgeeks.org/topological-sorting/ def longestPathUtil(v): global visited adjStack visited[v] = 1 # Recur for all the vertices adjacent # to this vertex for node in adj[v]: if (not visited[node[0]]): longestPathUtil(node[0]) # Push current vertex to stack which  # stores topological sort Stack.append(v) # The function do Topological Sort and finds # longest distances from given source vertex def longestPath(s): # Initialize distances to all vertices  # as infinite and global visited Stack adjV dist = [sys.maxsize for i in range(V)] # for (i = 0 i < V i++) # dist[i] = INT_MAX dist[s] = 0 for i in range(V): if (visited[i] == 0): longestPathUtil(i) # print(Stack) while (len(Stack) > 0): # Get the next vertex from topological order u = Stack[-1] del Stack[-1] if (dist[u] != sys.maxsize): # Update distances of all adjacent vertices # (edge from u -> v exists) for v in adj[u]: # Consider negative weight of edges and # find shortest path if (dist[v[0]] > dist[u] + v[1] * -1): dist[v[0]] = dist[u] + v[1] * -1 # Print the calculated longest distances for i in range(V): if (dist[i] == sys.maxsize): print('INT_MIN ' end = ' ') else: print(dist[i] * (-1) end = ' ') # Driver code if __name__ == '__main__': V = 6 visited = [0 for i in range(7)] Stack = [] adj = [[] for i in range(7)] addEdge(0 1 5) addEdge(0 2 3) addEdge(1 3 6) addEdge(1 2 2) addEdge(2 4 4) addEdge(2 5 2) addEdge(2 3 7) addEdge(3 5 1) addEdge(3 4 -1) addEdge(4 5 -2) s = 1 print('Following are longest distances from source vertex' s) longestPath(s) # This code is contributed by mohit kumar 29 
C#
// C# program to find single source longest distances // in a DAG using System; using System.Collections.Generic; // Graph is represented using adjacency list. Every node of // adjacency list contains vertex number of the vertex to // which edge connects. It also contains weight of the edge class AdjListNode {  private int v;  private int weight;  public AdjListNode(int _v int _w)  {  v = _v;  weight = _w;  }  public int getV() { return v; }  public int getWeight() { return weight; } } // Graph class represents a directed graph using adjacency // list representation class Graph {  private int V; // No. of vertices  // Pointer to an array containing adjacency lists  private List<AdjListNode>[] adj;  public Graph(int v) // Constructor  {  V = v;  adj = new List<AdjListNode>[ v ];  for (int i = 0; i < v; i++)  adj[i] = new List<AdjListNode>();  }  public void AddEdge(int u int v int weight)  {  AdjListNode node = new AdjListNode(v weight);  adj[u].Add(node); // Add v to u's list  }  // A recursive function used by longestPath. See below  // link for details.  // https://www.geeksforgeeks.org/dsa/topological-sorting/  private void LongestPathUtil(int v bool[] visited  Stack<int> stack)  {  // Mark the current node as visited  visited[v] = true;  // Recur for all the vertices adjacent to this  // vertex  foreach(AdjListNode node in adj[v])  {  if (!visited[node.getV()])  LongestPathUtil(node.getV() visited  stack);  }  // Push current vertex to stack which stores  // topological sort  stack.Push(v);  }  // The function do Topological Sort and finds longest  // distances from given source vertex  public void LongestPath(int s)  {    // Initialize distances to all vertices as infinite  // and distance to source as 0  int[] dist = new int[V];  for (int i = 0; i < V; i++)  dist[i] = Int32.MaxValue;  dist[s] = 0;  Stack<int> stack = new Stack<int>();  // Mark all the vertices as not visited  bool[] visited = new bool[V];  for (int i = 0; i < V; i++) {  if (visited[i] == false)  LongestPathUtil(i visited stack);  }  // Process vertices in topological order  while (stack.Count > 0) {  // Get the next vertex from topological order  int u = stack.Pop();  if (dist[u] != Int32.MaxValue) {  // Update distances of all adjacent vertices  // (edge from u -> v exists)  foreach(AdjListNode v in adj[u])  {  // consider negative weight of edges and  // find shortest path  if (dist[v.getV()]  > dist[u] + v.getWeight() * -1)  dist[v.getV()]  = dist[u] + v.getWeight() * -1;  }  }  }  // Print the calculated longest distances  for (int i = 0; i < V; i++) {  if (dist[i] == Int32.MaxValue)  Console.Write('INT_MIN ');  else  Console.Write('{0} ' dist[i] * -1);  }  Console.WriteLine();  } } public class GFG {  // Driver code  static void Main(string[] args)  {  Graph g = new Graph(6);  g.AddEdge(0 1 5);  g.AddEdge(0 2 3);  g.AddEdge(1 3 6);  g.AddEdge(1 2 2);  g.AddEdge(2 4 4);  g.AddEdge(2 5 2);  g.AddEdge(2 3 7);  g.AddEdge(3 5 1);  g.AddEdge(3 4 -1);  g.AddEdge(4 5 -2);  int s = 1;  Console.WriteLine(  'Following are longest distances from source vertex {0} '  s);  g.LongestPath(s);  } } // This code is contributed by cavi4762. 
Java
// A Java program to find single source longest distances // in a DAG import java.util.*; // Graph is represented using adjacency list. Every // node of adjacency list contains vertex number of // the vertex to which edge connects. It also // contains weight of the edge class AdjListNode {  private int v;  private int weight;  AdjListNode(int _v int _w)  {  v = _v;  weight = _w;  }  int getV() { return v; }  int getWeight() { return weight; } } // Class to represent a graph using adjacency list // representation public class GFG {  int V; // No. of vertices'  // Pointer to an array containing adjacency lists  ArrayList<AdjListNode>[] adj;  @SuppressWarnings('unchecked')  GFG(int V) // Constructor  {  this.V = V;  adj = new ArrayList[V];  for (int i = 0; i < V; i++) {  adj[i] = new ArrayList<>();  }  }  void addEdge(int u int v int weight)  {  AdjListNode node = new AdjListNode(v weight);  adj[u].add(node); // Add v to u's list  }  // A recursive function used by longestPath. See  // below link for details https://  // www.geeksforgeeks.org/topological-sorting/  void topologicalSortUtil(int v boolean visited[]  Stack<Integer> stack)  {  // Mark the current node as visited  visited[v] = true;  // Recur for all the vertices adjacent to this  // vertex  for (int i = 0; i < adj[v].size(); i++) {  AdjListNode node = adj[v].get(i);  if (!visited[node.getV()])  topologicalSortUtil(node.getV() visited  stack);  }  // Push current vertex to stack which stores  // topological sort  stack.push(v);  }  // The function to find Smallest distances from a  // given vertex. It uses recursive  // topologicalSortUtil() to get topological sorting.  void longestPath(int s)  {  Stack<Integer> stack = new Stack<Integer>();  int dist[] = new int[V];  // Mark all the vertices as not visited  boolean visited[] = new boolean[V];  for (int i = 0; i < V; i++)  visited[i] = false;  // Call the recursive helper function to store  // Topological Sort starting from all vertices  // one by one  for (int i = 0; i < V; i++)  if (visited[i] == false)  topologicalSortUtil(i visited stack);  // Initialize distances to all vertices as  // infinite and distance to source as 0  for (int i = 0; i < V; i++)  dist[i] = Integer.MAX_VALUE;  dist[s] = 0;  // Process vertices in topological order  while (stack.isEmpty() == false) {  // Get the next vertex from topological  // order  int u = stack.peek();  stack.pop();  // Update distances of all adjacent vertices  if (dist[u] != Integer.MAX_VALUE) {  for (AdjListNode v : adj[u]) {  if (dist[v.getV()]  > dist[u] + v.getWeight() * -1)  dist[v.getV()]  = dist[u] + v.getWeight() * -1;  }  }  }  // Print the calculated longest distances  for (int i = 0; i < V; i++)  if (dist[i] == Integer.MAX_VALUE)  System.out.print('INF ');  else  System.out.print(dist[i] * -1 + ' ');  }  // Driver program to test above functions  public static void main(String args[])  {  // Create a graph given in the above diagram.  // Here vertex numbers are 0 1 2 3 4 5 with  // following mappings:  // 0=r 1=s 2=t 3=x 4=y 5=z  GFG g = new GFG(6);  g.addEdge(0 1 5);  g.addEdge(0 2 3);  g.addEdge(1 3 6);  g.addEdge(1 2 2);  g.addEdge(2 4 4);  g.addEdge(2 5 2);  g.addEdge(2 3 7);  g.addEdge(3 5 1);  g.addEdge(3 4 -1);  g.addEdge(4 5 -2);  int s = 1;  System.out.print(  'Following are longest distances from source vertex '  + s + ' n');  g.longestPath(s);  } } // This code is contributed by Prithi_Dey 
JavaScript
class AdjListNode {  constructor(v weight) {  this.v = v;  this.weight = weight;  }  getV() { return this.v; }  getWeight() { return this.weight; } } class GFG {  constructor(V) {  this.V = V;  this.adj = new Array(V);  for (let i = 0; i < V; i++) {  this.adj[i] = new Array();  }  }  addEdge(u v weight) {  let node = new AdjListNode(v weight);  this.adj[u].push(node);  }  topologicalSortUtil(v visited stack) {  visited[v] = true;  for (let i = 0; i < this.adj[v].length; i++) {  let node = this.adj[v][i];  if (!visited[node.getV()]) {  this.topologicalSortUtil(node.getV() visited stack);  }  }  stack.push(v);  }  longestPath(s) {  let stack = new Array();  let dist = new Array(this.V);  let visited = new Array(this.V);  for (let i = 0; i < this.V; i++) {  visited[i] = false;  }  for (let i = 0; i < this.V; i++) {  if (!visited[i]) {  this.topologicalSortUtil(i visited stack);  }  }  for (let i = 0; i < this.V; i++) {  dist[i] = Number.MAX_SAFE_INTEGER;  }      dist[s] = 0;  let u = stack.pop();  while (stack.length > 0) {  u = stack.pop();  if (dist[u] !== Number.MAX_SAFE_INTEGER) {  for (let v of this.adj[u]) {  if (dist[v.getV()] > dist[u] + v.getWeight() * -1) {  dist[v.getV()] = dist[u] + v.getWeight() * -1;  }  }  } }      for (let i = 0; i < this.V; i++) {  if (dist[i] === Number.MAX_SAFE_INTEGER) {  console.log('INF');  }  else {  console.log(dist[i] * -1);  }  }  } } let g = new GFG(6); g.addEdge(0 1 5); g.addEdge(0 2 3); g.addEdge(1 3 6); g.addEdge(1 2 2); g.addEdge(2 4 4); g.addEdge(2 5 2); g.addEdge(2 3 7); g.addEdge(3 5 1); g.addEdge(3 4 -1); g.addEdge(4 5 -2); console.log('Longest distances from the vertex 1 : '); g.longestPath(1); //this code is contributed by devendra 

Вихід
Following are longest distances from source vertex 1 INT_MIN 0 2 9 8 10 

Часова складність : Часова складність топологічного сортування становить O(V + E). Після знаходження топологічного порядку алгоритм обробляє всі вершини і для кожної вершини запускає цикл для всіх суміжних вершин. Оскільки загальна кількість суміжних вершин у графі становить O(E), внутрішній цикл виконується O(V + E) разів. Тому загальна часова складність цього алгоритму становить O(V + E).

Космічна складність:
Просторова складність наведеного вище алгоритму становить O(V). Ми зберігаємо вихідний масив і стек для топологічного сортування.