Шаблон C++ — це потужна функція, додана до C++. Це дозволяє визначати загальні класи та загальні функції, і таким чином забезпечує підтримку загального програмування. Загальне програмування — це техніка, у якій загальні типи використовуються як параметри в алгоритмах, щоб вони могли працювати з різними типами даних.
Шаблони можна представити двома способами:
- Шаблони функцій
- Шаблони класів
Шаблони функцій:
Ми можемо визначити шаблон для функції. Наприклад, якщо у нас є функція add(), ми можемо створити версії функції add для додавання значень типу int, float або double.
Шаблон класу:
Ми можемо визначити шаблон для класу. Наприклад, шаблон класу може бути створений для класу масиву, який може приймати масив різних типів, таких як int array, float array або double array.
java print
Шаблон функції
- У загальних функціях використовується концепція шаблону функції. Загальні функції визначають набір операцій, які можна застосовувати до різних типів даних.
- Тип даних, з якими працюватиме функція, залежить від типу даних, переданих як параметр.
- Наприклад, алгоритм швидкого сортування реалізовано за допомогою загальної функції, його можна реалізувати в масиві цілих чисел або масиві чисел з плаваючою точкою.
- Загальна функція створюється за допомогою шаблону ключового слова. Шаблон визначає, яку функцію буде виконувати.
Синтаксис шаблону функції
template ret_type func_name(parameter_list) { // body of function. }
Де Ttype : Це ім’я покажчика місця заповнення для типу даних, що використовується функцією. Він використовується у визначенні функції. Це лише заповнювач, який компілятор автоматично замінить на фактичний тип даних.
клас : Ключове слово класу використовується для визначення загального типу в декларації шаблону.
Давайте розглянемо простий приклад шаблону функції:
#include using namespace std; template T add(T &a,T &b) { T result = a+b; return result; } int main() { int i =2; int j =3; float m = 2.3; float n = 1.2; cout<<'addition of i and j is :'< <add(i,j); cout<<' '; cout<<'addition m n <add(m,n); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> Addition of i and j is :5 Addition of m and n is :3.5 </pre> <p>In the above example, we create the function template which can perform the addition operation on any type either it can be integer, float or double.</p> <h3>Function Templates with Multiple Parameters</h3> <p>We can use more than one generic type in the template function by using the comma to separate the list.</p> <h2>Syntax</h2> <pre> template return_type function_name (arguments of type T1, T2....) { // body of function. } </pre> <p>In the above syntax, we have seen that the template function can accept any number of arguments of a different type.</p> <p> <strong>Let's see a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a,Y b) { std::cout << 'Value of a is : ' < <a<< std::endl; std::cout << 'value of b is : ' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let's understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout << 'Value of a is : ' < <a<< std::endl; } template void fun(x b ,y c) { std::cout << 'value of is : ' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let's see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let's understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout<<'value of a is : '< <a<<' '; } void fun(int b) { if(b%2="=0)" cout<<'number even'; else odd'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let's see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout << 'Addition of num1 and num2 : ' << num1+num2<<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, 'd'.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let's see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout << 'Values of a and b are : ' << a<<' ,'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let' s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let's see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i<size;i++)" std::cout << arr[i] ' '; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class 'A' is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></'></pre></std::endl;></pre></'value></pre></a<<></pre></a<<></pre></'addition>
У наведеному вище прикладі ми створюємо шаблон функції, який може виконувати операцію додавання для будь-якого типу, будь то ціле число, число з плаваючою точкою або подвійне число.
Шаблони функцій із кількома параметрами
Ми можемо використовувати більше ніж один загальний тип у функції шаблону, використовуючи кому для розділення списку.
Синтаксис
template return_type function_name (arguments of type T1, T2....) { // body of function. }
У наведеному вище синтаксисі ми бачили, що шаблонна функція може приймати будь-яку кількість аргументів різного типу.
Давайте розглянемо простий приклад:
#include using namespace std; template void fun(X a,Y b) { std::cout << 'Value of a is : ' < <a<< std::endl; std::cout << \'value of b is : \' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let's understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout << 'Value of a is : ' < <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let's see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let's understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout<<\'value of a is : \'< <a<<\' \'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let's see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout << 'Addition of num1 and num2 : ' << num1+num2<<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, 'd'.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let's see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout << 'Values of a and b are : ' << a<<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let' s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let's see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i<size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class 'A' is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<></pre></a<<>
У наведеному вище прикладі ми використовуємо два загальні типи у функції шаблону, тобто X і Y.
Перевантаження шаблону функції
Ми можемо перевантажити загальну функцію означає, що перевантажені функції шаблону можуть відрізнятися за списком параметрів.
Давайте зрозуміємо це на простому прикладі:
#include using namespace std; template void fun(X a) { std::cout << 'Value of a is : ' < <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let's see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let's understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout<<\'value of a is : \'< <a<<\' \'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let's see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout << 'Addition of num1 and num2 : ' << num1+num2<<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, 'd'.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let's see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout << 'Values of a and b are : ' << a<<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let' s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let's see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i<size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class 'A' is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<>
У наведеному вище прикладі шаблон функції fun() перевантажено.
Обмеження загальних функцій
Загальні функції виконують ту саму операцію для всіх версій функції, за винятком різного типу даних. Давайте розглянемо простий приклад перевантаженої функції, яку не можна замінити загальною функцією, оскільки обидві функції мають різні функціональні можливості.
Давайте зрозуміємо це на простому прикладі:
#include using namespace std; void fun(double a) { cout<<\'value of a is : \'< <a<<\' \'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let's see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout << 'Addition of num1 and num2 : ' << num1+num2<<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, 'd'.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let's see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout << 'Values of a and b are : ' << a<<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let' s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let's see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i<size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class 'A' is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value>
У наведеному вище прикладі ми перевантажуємо звичайні функції. Ми не можемо перевантажувати загальні функції, оскільки обидві функції мають різні функції. Перший відображає значення, а другий визначає, парне число чи ні.
ШАБЛОН КЛАСУ
Шаблон класу також можна визначити подібно до шаблону функції. Коли клас використовує концепцію шаблону, тоді цей клас називається загальним класом.
Синтаксис
template class class_name { . . }
Ttype це ім'я заповнювача, яке буде визначено під час створення екземпляра класу. Ми можемо визначити більше ніж один загальний тип даних за допомогою списку, розділеного комами. Ttype можна використовувати всередині тіла класу.
Тепер ми створюємо екземпляр класу
class_name ob;
де назва_класу : Це назва класу.
типу : це тип даних, з якими працює клас.
в : Це назва об'єкта.
Давайте розглянемо простий приклад:
#include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout << 'Addition of num1 and num2 : ' << num1+num2<<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, 'd'.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let's see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout << 'Values of a and b are : ' << a<<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let' s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let's see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i<size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class 'A' is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;>
У наведеному вище прикладі ми створюємо шаблон для класу A. Всередині методу main() ми створюємо екземпляр класу A з назвою «d».
ШАБЛОН КЛАСУ З КІЛЬКОМА ПАРАМЕТРАМИ
Ми можемо використовувати більше ніж один загальний тип даних у шаблоні класу, і кожен загальний тип даних відокремлюється комою.
Синтаксис
template class class_name { // Body of the class. }
Давайте розглянемо простий приклад, коли шаблон класу містить два загальних типи даних.
підручник pyspark
#include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout << 'Values of a and b are : ' << a<<\\' ,\\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let' s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let's see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i<size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class 'A' is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\\'>
Аргументи шаблону без типу
Шаблон може містити кілька аргументів, і ми також можемо використовувати аргументи, що не належать до типу. Окрім аргументу типу T, ми також можемо використовувати інші типи аргументів, такі як рядки, імена функцій, постійні вирази та вбудовані типи. Давайте розглянемо такий приклад:
template class array { T arr[size]; // automatic array initialization. };
У наведеному вище випадку нетиповий аргумент шаблону — це розмір, тому шаблон надає розмір масиву як аргумент.
Аргументи вказуються під час створення об’єктів класу:
array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars.
Давайте розглянемо простий приклад нетипових аргументів шаблону.
#include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i<size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class 'A' is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)>
У наведеному вище прикладі створюється шаблон класу, який містить аргумент шаблону nontype, тобто розмір. Він вказується при створенні об'єкта класу 'A'.
Пункти, які слід пам’ятати
- C++ підтримує потужну функцію, відому як шаблон, для реалізації концепції загального програмування.
- Шаблон дозволяє нам створити сімейство класів або сімейство функцій для обробки різних типів даних.
- Класи та функції шаблонів усувають дублювання коду різних типів даних, що робить розробку легшою та швидшою.
- У шаблоні класу та функції можна використовувати декілька параметрів.
- Функції шаблону також можуть бути перевантажені.
- Ми також можемо використовувати нетипові аргументи, такі як вбудовані або похідні типи даних як аргументи шаблону.
\\'>\'value>'addition>