logo

LCA для n-ного дерева | Постійний запит O(1)

Ми бачили різні методи з різними часовими складностями для обчислення LCA в n-арному дереві:-

Спосіб 1: Наївний метод (обчислення шляху від кореня до вузла) | O(n) на запит  
Спосіб 2: Використання декомпозиції Sqrt | O(sqrt H)  
Спосіб 3: Використання підходу розрідженої матриці DP | O (вхід) 

Давайте вивчимо інший метод, який має швидший час запиту, ніж усі вищезгадані методи. Тому нашою метою буде розрахувати LCA в постійний час ~ O(1) . Давайте подивимося, як ми можемо цього досягти. 

Спосіб 4: Використання запиту на мінімальний діапазон 

Ми обговорили LCA та RMQ для бінарного дерева . Тут ми обговорюємо перетворення проблеми LCA в задачу RMQ для n-арного дерева. 

  Pre-requisites:-     LCA in Binary Tree using RMQ     RMQ using sparse table  

Ключова концепція: У цьому методі ми зменшимо нашу проблему LCA до проблеми RMQ (запит мінімального діапазону) над статичним масивом. Коли ми це зробимо, ми зв’яжемо запити щодо мінімального діапазону з необхідними запитами LCA. 

Першим кроком буде розкладання дерева на плоский лінійний масив. Для цього ми можемо застосувати блукання Ейлера. Прогулянка Ейлера дасть попередній обхід графа. Отже, ми виконаємо обхід Ейлера по дереву та збережемо вузли в масиві, коли ми їх відвідаємо. Цей процес зменшує дерево > 16901489_1309372785813855_1903972436_n' title=


Тепер давайте подумаємо в загальних рисах: розглянемо будь-які два вузли на дереві. Буде точно один шлях, що з’єднує обидва вузли, і вузол, який має найменше значення глибини на шляху, буде LCA двох заданих вузлів.
Тепер візьмемо будь-які два різні вузли в і v в масиві блукань Ейлера. Тепер усі елементи на шляху від u до v будуть лежати між індексами вузлів u і v у масиві обходу Ейлера. Тому нам просто потрібно обчислити вузол із мінімальною глибиною між індексом вузла u та вузла v у масиві Ейлера. 

Для цього ми підтримуватимемо інший масив, який міститиме глибину всіх вузлів, що відповідає їхній позиції в масиві блукання Ейлера, щоб ми могли застосувати до нього наш алгоритм RMQ.

Нижче наведено масив Ейлера, паралельний його масиву глибинних доріжок. 

16934185_1309372782480522_1333490382_n' title=

одиночний дизайн


Приклад: - Розглянемо два вузли вузол 6 і вузол 7 в масиві Ейлера. Щоб обчислити LCA вузла 6 і вузла 7, ми шукаємо найменше значення глибини для всіх вузлів між вузлом 6 і вузлом 7. 
тому вузол 1 має найменший значення глибини = 0 і, отже, це LCA для вузла 6 і вузла 7.

' title=

Реалізація: -  

We will be maintaining three arrays   1)  Euler Path   2)  Depth array   3)  First Appearance Index

Шлях Ейлера та масив глибини такі ж, як описано вище

метод java

Індекс першого вигляду FAI[] : Масив індексів першого вигляду зберігатиме індекс для першої позиції кожного вузла в масиві шляху Ейлера. FAI[i] = перша поява i-го вузла в масиві Ейлера. 

Реалізація вищевказаного методу наведена нижче:

Реалізація:

C++
// C++ program to demonstrate LCA of n-ary tree // in constant time. #include 'bits/stdc++.h' using namespace std; #define sz 101 vector < int > adj[sz]; // stores the tree vector < int > euler; // tracks the eulerwalk vector < int > depthArr; // depth for each node corresponding  // to eulerwalk int FAI[sz]; // stores first appearance index of every node int level[sz]; // stores depth for all nodes in the tree int ptr; // pointer to euler walk int dp[sz][18]; // sparse table int logn[sz]; // stores log values int p2[20]; // stores power of 2 void buildSparseTable(int n) {  // initializing sparse table  memset(dp-1sizeof(dp));  // filling base case values  for (int i=1; i<n; i++)  dp[i-1][0] = (depthArr[i]>depthArr[i-1])?i-1:i;  // dp to fill sparse table  for (int l=1; l<15; l++)  for (int i=0; i<n; i++)  if (dp[i][l-1]!=-1 and dp[i+p2[l-1]][l-1]!=-1)  dp[i][l] =  (depthArr[dp[i][l-1]]>depthArr[dp[i+p2[l-1]][l-1]])?  dp[i+p2[l-1]][l-1] : dp[i][l-1];  else  break; } int query(int lint r) {  int d = r-l;  int dx = logn[d];  if (l==r) return l;  if (depthArr[dp[l][dx]] > depthArr[dp[r-p2[dx]][dx]])  return dp[r-p2[dx]][dx];  else  return dp[l][dx]; } void preprocess() {  // memorizing powers of 2  p2[0] = 1;  for (int i=1; i<18; i++)  p2[i] = p2[i-1]*2;  // memorizing all log(n) values  int val = 1ptr=0;  for (int i=1; i<sz; i++)  {  logn[i] = ptr-1;  if (val==i)  {  val*=2;  logn[i] = ptr;  ptr++;  }  } } /**  * Euler Walk ( preorder traversal)  * converting tree to linear depthArray  * Time Complexity : O(n)  * */ void dfs(int curint prevint dep) {  // marking FAI for cur node  if (FAI[cur]==-1)  FAI[cur] = ptr;  level[cur] = dep;  // pushing root to euler walk  euler.push_back(cur);  // incrementing euler walk pointer  ptr++;  for (auto x:adj[cur])  {  if (x != prev)  {  dfs(xcurdep+1);  // pushing cur again in backtrack  // of euler walk  euler.push_back(cur);  // increment euler walk pointer  ptr++;  }  } } // Create Level depthArray corresponding // to the Euler walk Array void makeArr() {  for (auto x : euler)  depthArr.push_back(level[x]); } int LCA(int uint v) {  // trivial case  if (u==v)  return u;  if (FAI[u] > FAI[v])  swap(uv);  // doing RMQ in the required range  return euler[query(FAI[u] FAI[v])]; } void addEdge(int uint v) {  adj[u].push_back(v);  adj[v].push_back(u); } int main(int argc char const *argv[]) {  // constructing the described tree  int numberOfNodes = 8;  addEdge(12);  addEdge(13);  addEdge(24);  addEdge(25);  addEdge(26);  addEdge(37);  addEdge(38);  // performing required precalculations  preprocess();  // doing the Euler walk  ptr = 0;  memset(FAI-1sizeof(FAI));  dfs(100);  // creating depthArray corresponding to euler[]  makeArr();  // building sparse table  buildSparseTable(depthArr.size());  cout << 'LCA(67) : ' << LCA(67) << 'n';  cout << 'LCA(64) : ' << LCA(64) << 'n';  return 0; } 
Java
// Java program to demonstrate LCA of n-ary // tree in constant time. import java.util.ArrayList; import java.util.Arrays; class GFG{ static int sz = 101; @SuppressWarnings('unchecked') // Stores the tree static ArrayList<Integer>[] adj = new ArrayList[sz];  // Tracks the eulerwalk static ArrayList<Integer> euler = new ArrayList<>();  // Depth for each node corresponding static ArrayList<Integer> depthArr = new ArrayList<>();  // to eulerwalk // Stores first appearance index of every node static int[] FAI = new int[sz];  // Stores depth for all nodes in the tree static int[] level = new int[sz];  // Pointer to euler walk static int ptr; // Sparse table static int[][] dp = new int[sz][18]; // Stores log values static int[] logn = new int[sz]; // Stores power of 2 static int[] p2 = new int[20]; static void buildSparseTable(int n) {    // Initializing sparse table  for(int i = 0; i < sz; i++)  {  for(int j = 0; j < 18; j++)   {  dp[i][j] = -1;  }  }  // Filling base case values  for(int i = 1; i < n; i++)  dp[i - 1][0] = (depthArr.get(i) >   depthArr.get(i - 1)) ?   i - 1 : i;  // dp to fill sparse table  for(int l = 1; l < 15; l++)  for(int i = 0; i < n; i++)  if (dp[i][l - 1] != -1 &&  dp[i + p2[l - 1]][l - 1] != -1)  dp[i][l] = (depthArr.get(dp[i][l - 1]) >  depthArr.get(  dp[i + p2[l - 1]][l - 1])) ?   dp[i + p2[l - 1]][l - 1] :   dp[i][l - 1];  else  break; } static int query(int l int r)  {  int d = r - l;  int dx = logn[d];    if (l == r)  return l;    if (depthArr.get(dp[l][dx]) >   depthArr.get(dp[r - p2[dx]][dx]))  return dp[r - p2[dx]][dx];  else  return dp[l][dx]; } static void preprocess()  {    // Memorizing powers of 2  p2[0] = 1;  for(int i = 1; i < 18; i++)  p2[i] = p2[i - 1] * 2;  // Memorizing all log(n) values  int val = 1 ptr = 0;  for(int i = 1; i < sz; i++)   {  logn[i] = ptr - 1;  if (val == i)   {  val *= 2;  logn[i] = ptr;  ptr++;  }  } } // Euler Walk ( preorder traversal) converting // tree to linear depthArray  // Time Complexity : O(n) static void dfs(int cur int prev int dep) {    // Marking FAI for cur node  if (FAI[cur] == -1)  FAI[cur] = ptr;  level[cur] = dep;  // Pushing root to euler walk  euler.add(cur);  // Incrementing euler walk pointer  ptr++;  for(Integer x : adj[cur])  {  if (x != prev)  {  dfs(x cur dep + 1);  // Pushing cur again in backtrack  // of euler walk  euler.add(cur);  // Increment euler walk pointer  ptr++;  }  } } // Create Level depthArray corresponding // to the Euler walk Array static void makeArr() {  for(Integer x : euler)  depthArr.add(level[x]); } static int LCA(int u int v)  {    // Trivial case  if (u == v)  return u;  if (FAI[u] > FAI[v])  {  int temp = u;  u = v;  v = temp;  }  // Doing RMQ in the required range  return euler.get(query(FAI[u] FAI[v])); } static void addEdge(int u int v) {  adj[u].add(v);  adj[v].add(u); } // Driver code public static void main(String[] args) {  for(int i = 0; i < sz; i++)  {  adj[i] = new ArrayList<>();  }    // Constructing the described tree  int numberOfNodes = 8;  addEdge(1 2);  addEdge(1 3);  addEdge(2 4);  addEdge(2 5);  addEdge(2 6);  addEdge(3 7);  addEdge(3 8);  // Performing required precalculations  preprocess();  // Doing the Euler walk  ptr = 0;  Arrays.fill(FAI -1);  dfs(1 0 0);  // Creating depthArray corresponding to euler[]  makeArr();    // Building sparse table  buildSparseTable(depthArr.size());  System.out.println('LCA(67) : ' + LCA(6 7));  System.out.println('LCA(64) : ' + LCA(6 4)); } } // This code is contributed by sanjeev2552 
Python3
# Python program to demonstrate LCA of n-ary tree # in constant time. from typing import List # stores the tree adj = [[] for _ in range(101)] # tracks the eulerwalk euler = [] # depth for each node corresponding to eulerwalk depthArr = [] # stores first appearance index of every node FAI = [-1] * 101 # stores depth for all nodes in the tree level = [0] * 101 # pointer to euler walk ptr = 0 # sparse table dp = [[-1] * 18 for _ in range(101)] # stores log values logn = [0] * 101 # stores power of 2 p2 = [0] * 20 def buildSparseTable(n: int): # initializing sparse table for i in range(n): dp[i][0] = i-1 if depthArr[i] > depthArr[i-1] else i # dp to fill sparse table for l in range(1 15): for i in range(n): if dp[i][l-1] != -1 and dp[i+p2[l-1]][l-1] != -1: dp[i][l] = dp[i+p2[l-1]][l-1] if depthArr[dp[i][l-1] ] > depthArr[dp[i+p2[l-1]][l-1]] else dp[i][l-1] else: break def query(l: int r: int) -> int: d = r-l dx = logn[d] if l == r: return l if depthArr[dp[l][dx]] > depthArr[dp[r-p2[dx]][dx]]: return dp[r-p2[dx]][dx] else: return dp[l][dx] def preprocess(): global ptr # memorizing powers of 2 p2[0] = 1 for i in range(1 18): p2[i] = p2[i-1]*2 # memorizing all log(n) values val = 1 ptr = 0 for i in range(1 101): logn[i] = ptr-1 if val == i: val *= 2 logn[i] = ptr ptr += 1 def dfs(cur: int prev: int dep: int): global ptr # marking FAI for cur node if FAI[cur] == -1: FAI[cur] = ptr level[cur] = dep # pushing root to euler walk euler.append(cur) # incrementing euler walk pointer ptr += 1 for x in adj[cur]: if x != prev: dfs(x cur dep+1) # pushing cur again in backtrack # of euler walk euler.append(cur) # increment euler walk pointer ptr += 1 # Create Level depthArray corresponding # to the Euler walk Array def makeArr(): global depthArr for x in euler: depthArr.append(level[x]) def LCA(u: int v: int) -> int: # trivial case if u == v: return u if FAI[u] > FAI[v]: u v = v u # doing RMQ in the required range return euler[query(FAI[u] FAI[v])] def addEdge(u v): adj[u].append(v) adj[v].append(u) # constructing the described tree numberOfNodes = 8 addEdge(1 2) addEdge(1 3) addEdge(2 4) addEdge(2 5) addEdge(2 6) addEdge(3 7) addEdge(3 8) # performing required precalculations preprocess() # doing the Euler walk ptr = 0 FAI = [-1] * (numberOfNodes + 1) dfs(1 0 0) # creating depthArray corresponding to euler[] makeArr() # building sparse table buildSparseTable(len(depthArr)) print('LCA(67) : ' LCA(6 7)) print('LCA(64) : ' LCA(6 4)) 
C#
// C# program to demonstrate LCA of n-ary // tree in constant time. using System; using System.Collections.Generic; public class GFG {  static int sz = 101;  // Stores the tree  static List<int>[] adj = new List<int>[sz];    // Tracks the eulerwalk  static List<int> euler = new List<int>();    // Depth for each node corresponding  static List<int> depthArr = new List<int>();    // to eulerwalk  // Stores first appearance index of every node  static int[] FAI = new int[sz];    // Stores depth for all nodes in the tree  static int[] level = new int[sz];    // Pointer to euler walk  static int ptr;    // Sparse table  static int[] dp = new int[sz 18];    // Stores log values  static int[] logn = new int[sz];    // Stores power of 2  static int[] p2 = new int[20];    static void buildSparseTable(int n)  {  // Initializing sparse table  for(int i = 0; i < sz; i++)  {  for(int j = 0; j < 18; j++)   {  dp[ij] = -1;  }  }    // Filling base case values  for(int i = 1; i < n; i++)  dp[i - 10] = (depthArr[i] > depthArr[i - 1]) ? i - 1 : i;    // dp to fill sparse table  for(int l = 1; l < 15; l++)  for(int i = 0; i < n; i++)  if (dp[il - 1] != -1 && dp[i + p2[l - 1]l - 1] != -1)  dp[il] = (depthArr[dp[il - 1]] > depthArr[dp[i + p2[l - 1]l - 1]]) ? dp[i + p2[l - 1]l - 1] : dp[il - 1];  else  break;  }    static int query(int l int r)   {  int d = r - l;  int dx = logn[d];    if (l == r)  return l;    if (depthArr[dp[ldx]] > depthArr[dp[r - p2[dx]dx]])  return dp[r - p2[dx]dx];  else  return dp[ldx];  }    static void preprocess()   {  // Memorizing powers of 2  p2[0] = 1;  for(int i = 1; i < 18; i++)  p2[i] = p2[i - 1] * 2;    // Memorizing all log(n) values  int val = 1 ptr = 0;  for(int i = 1; i < sz; i++)   {  logn[i] = ptr - 1;  if (val == i)   {  val *= 2;  logn[i] = ptr;  ptr++;  }  }  }    // Euler Walk ( preorder traversal) converting  // tree to linear depthArray   // Time Complexity : O(n)  static void dfs(int cur int prev int dep)  {  // Marking FAI for cur node  if (FAI[cur] == -1)  FAI[cur] = ptr;    level[cur] = dep;    // Pushing root to euler walk  euler.Add(cur);    // Incrementing euler walk pointer  ptr++;    foreach (int x in adj[cur])  {  if (x != prev)  {  dfs(x cur dep + 1);    euler.Add(cur);    ptr++;  }  }  }    // Create Level depthArray corresponding  // to the Euler walk Array  static void makeArr()  {  foreach (int x in euler)  depthArr.Add(level[x]);  }    static int LCA(int u int v)   {  // Trivial case  if (u == v)  return u;    if (FAI[u] > FAI[v])  {  int temp = u;  u = v;  v = temp;  }    // Doing RMQ in the required range  return euler[query(FAI[u] FAI[v])];  }    static void addEdge(int u int v)  {  adj[u].Add(v);  adj[v].Add(u);  }  // Driver Code  static void Main(string[] args)  {  int sz = 9;  adj = new List<int>[sz];  for (int i = 0; i < sz; i++)  {  adj[i] = new List<int>();  }  // Constructing the described tree  int numberOfNodes = 8;  addEdge(1 2);  addEdge(1 3);  addEdge(2 4);  addEdge(2 5);  addEdge(2 6);  addEdge(3 7);  addEdge(3 8);  // Performing required precalculations  preprocess();  // Doing the Euler walk  ptr = 0;  Array.Fill(FAI -1);  dfs(1 0 0);  // Creating depthArray corresponding to euler[]  makeArr();  // Building sparse table  buildSparseTable(depthArr.Count);  Console.WriteLine('LCA(67) : ' + LCA(6 7));  Console.WriteLine('LCA(64) : ' + LCA(6 4));  }   } // This code is contributed by Prince Kumar 
JavaScript
let adj = []; for (let _ = 0; _ < 101; _++) {  adj.push([]); } // tracks the eulerwalk let euler = []; // depth for each node corresponding to eulerwalk let depthArr = []; // stores first appearance index of every node let FAI = new Array(101).fill(-1); // stores depth for all nodes in the tree let level = new Array(101).fill(0); // pointer to euler walk let ptr = 0; // sparse table let dp = []; for (let _ = 0; _ < 101; _++) {  dp.push(new Array(18).fill(-1)); } // stores log values let logn = new Array(101).fill(0); // stores power of 2 let p2 = new Array(20).fill(0); function buildSparseTable(n) {  // initializing sparse table  for (let i = 0; i < n; i++) {  dp[i][0] = i - 1 >= 0 && depthArr[i] > depthArr[i - 1] ? i - 1 : i;  }  // dp to fill sparse table  for (let l = 1; l < 15; l++) {  for (let i = 0; i < n; i++) {  if (  dp[i][l - 1] !== -1 &&  dp[i + p2[l - 1]][l - 1] !== -1  ) {  dp[i][l] =  depthArr[dp[i][l - 1]] >  depthArr[dp[i + p2[l - 1]][l - 1]]  ? dp[i + p2[l - 1]][l - 1]  : dp[i][l - 1];  } else {  break;  }  }  } } function query(l r) {  let d = r - l;  let dx = logn[d];  if (l === r) {  return l;  }  if (depthArr[dp[l][dx]] > depthArr[dp[r - p2[dx]][dx]]) {  return dp[r - p2[dx]][dx];  } else {  return dp[l][dx];  } } function preprocess() {  // memorizing powers of 2  p2[0] = 1;  for (let i = 1; i < 18; i++) {  p2[i] = p2[i - 1] * 2;  }  // memorizing all log(n) values  let val = 1;  ptr = 0;  for (let i = 1; i < 101; i++) {  logn[i] = ptr - 1;  if (val === i) {  val *= 2;  logn[i] = ptr;  ptr += 1;  }  } } function dfs(cur prev dep) {  // marking FAI for cur node  if (FAI[cur] === -1) {  FAI[cur] = ptr;  }  level[cur] = dep;  // pushing root to euler walk  euler.push(cur);  // incrementing euler walk pointer  ptr += 1;  for (let x of adj[cur]) {  if (x !== prev) {  dfs(x cur dep + 1);  // pushing cur again in backtrack  // of euler walk  euler.push(cur);  // increment euler walk pointer  ptr += 1;  }  } } // Create Level depthArray corresponding // to the Euler walk Array function makeArr() {  for (let x of euler) {  depthArr.push(level[x]);  } } function LCA(u v) {  // trivial case  if (u === v) {  return u;  }  if (FAI[u] > FAI[v]) {  [u v] = [v u];  }  // doing RMQ in the required range  return euler[query(FAI[u] FAI[v])]; } function addEdge(u v) {  adj[u].push(v);  adj[v].push(u); } // constructing the described tree let numberOfNodes = 8; addEdge(1 2); addEdge(1 3); addEdge(2 4); addEdge(2 5); addEdge(2 6); addEdge(3 7); addEdge(3 8); // performing required precalculations preprocess(); // doing the Euler walk ptr = 0; FAI = new Array(numberOfNodes + 1).fill(-1); dfs(1 0 0); // creating depthArray corresponding to euler[] makeArr(); // building sparse table buildSparseTable(depthArr.length); console.log('LCA(67) : ' LCA(6 7)); console.log('LCA(64) : ' LCA(6 4)); 

Вихід
LCA(67) : 1 LCA(64) : 2

Примітка: Ми попередньо розраховуємо всю необхідну потужність двійок, а також попередньо обчислюємо всі необхідні значення журналу, щоб забезпечити постійну часову складність для кожного запиту. Інакше, якби ми робили обчислення журналу для кожної операції запиту, наша часова складність не була б постійною.

Часова складність: Процес перетворення з LCA на RMQ здійснюється за допомогою Euler Walk O(n) час. 
Попередня обробка для розрідженої таблиці в RMQ займає O(nlogn) часу, а відповідь на кожен запит є процесом постійного часу. Тому загальна часова складність становить O(nlogn) - попередня обробка та О(1) для кожного запиту.

Допоміжний простір: O(n+s)

 

Створіть вікторину