Враховуючи а зв'язний неорієнтований граф представлений списком суміжності adjList[][] з п вузли і м ребра з кожним вузлом, що має a чіткий ярлик від від 0 до n-1 і кожен adj[i] представляє список вершин, пов’язаних із вершиною i.
вибрати sql з кількох таблиць
Створіть a клонувати графа, де кожен вузол у графі містить ціле число вал і масив ( сусіди ) вузлів містить вузли, які є суміжними з поточним вузлом.
class Node {
val: ціле число
сусіди: список [вузол]
}
Ваше завдання — клонувати заданий граф і повернути посилання на клонований граф.
Примітка: Якщо ви повернете правильну копію заданого графіка, результат буде істинним; інакше, якщо копія буде неправильною, буде надруковано помилку.
Приклади
введення: n = 4 adjList[][] = [[1 2] [0 2] [0 1 3] [2]]
Вихід: правда
Пояснення:
![]()
Оскільки клонований графік ідентичний оригіналу, результат буде істинним.введення: n = 3 adjList[][] = [[1 2] [0] [0]]
Вихід: правда
Пояснення:
Оскільки клонований графік ідентичний оригіналу, результат буде істинним.
Зміст
- Чому нам потрібно відстежувати відвідані/клоновані вузли?
- Як відстежувати відвідані/клоновані вузли?
- Як підключити вузли-клони?
- Як перевірити, чи клонований графік правильний?
- [Підхід 1] Використання обходу BFS - O(V+E) час і O(V) простір
- [Підхід 2] Використання обходу DFS - O(V+E) час і O(V) простір
Чому нам потрібно відстежувати відвідані/клоновані вузли?
Нам потрібно відстежувати відвідані або клоновані вузли, щоб уникнути нескінченної рекурсії та надлишкової роботи під час клонування графа. Оскільки графіки можуть містити цикли (де вузол може вказувати на попередньо відвіданий вузол) без відстеження вузлів, які ми вже клонували, функція клонування нескінченно повертатиметься до тих самих вузлів, що призведе до переповнення стеку або неправильного дублювання.
Як відстежувати відвідані/клоновані вузли?
HashMap/Map потрібен для підтримки всіх уже створених вузлів. Магазини ключів : Посилання/адреса оригінального вузла Зберігає вартість : Посилання/адреса клонованого вузла Було зроблено копію всіх вузлів графа.
Як підключити вузли-клони?
Під час відвідування сусідніх вершин a вузол в отримати відповідне клонування вузол IN тепер відвідайте всі сусідні вузли для в і для кожного сусіда знайдіть відповідний вузол-клон (якщо не знайдено, створіть один), а потім перемістіть у сусідній вектор IN вузол.
Як перевірити, чи клонований графік правильний?
Виконайте обхід BFS на вихідному графі перед клонуванням, а потім знову на клонованому графі після завершення клонування. Під час кожного обходу друкуйте значення кожного вузла разом із його адресою (або посиланням). Щоб перевірити правильність клонування, порівняйте порядок вузлів, відвіданих в обох обходах. Якщо значення вузлів з’являються в однаковому порядку, але їхні адреси (або посилання) відрізняються, це підтверджує, що графік успішно та правильно клоновано.
Дізнайтеся, як клонувати неорієнтований граф, включаючи графи з кількома компонентами зв’язку використання BFS або DFS для забезпечення повної глибокої копії всіх вузлів і ребер.
[Підхід 1] Використання обходу BFS - O(V+E) час і O(V) простір
C++У підході BFS граф клонується ітеративно за допомогою черги. Ми починаємо з клонування початкового вузла та розміщення його в черзі. Коли ми обробляємо кожен вузол із черги, ми відвідуємо його сусідів. Якщо сусід ще не клоновано, ми створюємо клон, зберігаємо його на карті та ставимо в чергу для подальшої обробки. Потім ми додаємо клон сусіда до списку сусідів поточного клону вузла. Цей процес триває рівень за рівнем, гарантуючи, що всі вузли відвідуються в порядку ширини. BFS особливо корисний для уникнення глибокої рекурсії та ефективної обробки великих або широких графів.
#include #include #include #include using namespace std; // Definition for a Node struct Node { int val; vector<Node*> neighbors; }; // Clone the graph Node* cloneGraph(Node* node) { if (!node) return nullptr; map<Node* Node*> mp; queue<Node*> q; // Clone the source node Node* clone = new Node(); clone->val = node->val; mp[node] = clone; q.push(node); while (!q.empty()) { Node* u = q.front(); q.pop(); for (auto neighbor : u->neighbors) { // Clone neighbor if not already cloned if (mp.find(neighbor) == mp.end()) { Node* neighborClone = new Node(); neighborClone->val = neighbor->val; mp[neighbor] = neighborClone; q.push(neighbor); } // Link clone of neighbor to clone of current node mp[u]->neighbors.push_back(mp[neighbor]); } } return mp[node]; } // Build graph Node* buildGraph() { Node* node1 = new Node(); node1->val = 0; Node* node2 = new Node(); node2->val = 1; Node* node3 = new Node(); node3->val = 2; Node* node4 = new Node(); node4->val = 3; node1->neighbors = {node2 node3}; node2->neighbors = {node1 node3}; node3->neighbors = {node1 node2 node4}; node4->neighbors = {node3}; return node1; } // Compare two graphs for structural and value equality bool compareGraphs(Node* node1 Node* node2 map<Node* Node*>& visited) { if (!node1 || !node2) return node1 == node2; if (node1->val != node2->val || node1 == node2) return false; visited[node1] = node2; if (node1->neighbors.size() != node2->neighbors.size()) return false; for (size_t i = 0; i < node1->neighbors.size(); ++i) { Node* n1 = node1->neighbors[i]; Node* n2 = node2->neighbors[i]; if (visited.count(n1)) { if (visited[n1] != n2) return false; } else { if (!compareGraphs(n1 n2 visited)) return false; } } return true; } // Driver Code int main() { Node* original = buildGraph(); Node* cloned = cloneGraph(original); map<Node* Node*> visited; cout << (compareGraphs(original cloned visited) ? 'true' : 'false') << endl; return 0; }
Java import java.util.*; // Definition for a Node class Node { public int val; public ArrayList<Node> neighbors; public Node() { neighbors = new ArrayList<>(); } public Node(int val) { this.val = val; neighbors = new ArrayList<>(); } } public class GfG { // Clone the graph public static Node cloneGraph(Node node) { if (node == null) return null; Map<Node Node> mp = new HashMap<>(); Queue<Node> q = new LinkedList<>(); // Clone the starting node Node clone = new Node(node.val); mp.put(node clone); q.offer(node); while (!q.isEmpty()) { Node current = q.poll(); for (Node neighbor : current.neighbors) { // Clone neighbor if it hasn't been cloned yet if (!mp.containsKey(neighbor)) { mp.put(neighbor new Node(neighbor.val)); q.offer(neighbor); } // Add the clone of the neighbor to the current node's clone mp.get(current).neighbors.add(mp.get(neighbor)); } } return mp.get(node); } // Build graph public static Node buildGraph() { Node node1 = new Node(0); Node node2 = new Node(1); Node node3 = new Node(2); Node node4 = new Node(3); node1.neighbors.addAll(new ArrayList<> (Arrays.asList(node2 node3))); node2.neighbors.addAll(new ArrayList<> (Arrays.asList(node1 node3))); node3.neighbors.addAll(new ArrayList<> (Arrays.asList(node1 node2 node4))); node4.neighbors.addAll(new ArrayList<> (Arrays.asList(node3))); return node1; } // Compare two graphs for structure and value public static boolean compareGraphs(Node n1 Node n2 HashMap<Node Node> visited) { if (n1 == null || n2 == null) return n1 == n2; if (n1.val != n2.val || n1 == n2) return false; visited.put(n1 n2); if (n1.neighbors.size() != n2.neighbors.size()) return false; for (int i = 0; i < n1.neighbors.size(); i++) { Node neighbor1 = n1.neighbors.get(i); Node neighbor2 = n2.neighbors.get(i); if (visited.containsKey(neighbor1)) { if (visited.get(neighbor1) != neighbor2) return false; } else { if (!compareGraphs(neighbor1 neighbor2 visited)) return false; } } return true; } public static void main(String[] args) { Node original = buildGraph(); Node cloned = cloneGraph(original); boolean isEqual = compareGraphs(original cloned new HashMap<>()); System.out.println(isEqual ? 'true' : 'false'); } }
Python from collections import deque # Definition for a Node class Node: def __init__(self val=0): self.val = val self.neighbors = [] # Clone the graph def cloneGraph(node): if not node: return None # Map to hold original nodes as keys and their clones as values mp = {} # Initialize BFS queue q = deque([node]) # Clone the starting node mp[node] = Node(node.val) while q: current = q.popleft() for neighbor in current.neighbors: # If neighbor not cloned yet if neighbor not in mp: mp[neighbor] = Node(neighbor.val) q.append(neighbor) # Link clone of neighbor to the clone of the current node mp[current].neighbors.append(mp[neighbor]) return mp[node] # Build graph def buildGraph(): node1 = Node(0) node2 = Node(1) node3 = Node(2) node4 = Node(3) node1.neighbors = [node2 node3] node2.neighbors = [node1 node3] node3.neighbors = [node1 node2 node4] node4.neighbors = [node3] return node1 # Compare two graphs structurally and by values def compareGraphs(n1 n2 visited): if not n1 or not n2: return n1 == n2 if n1.val != n2.val or n1 is n2: return False visited[n1] = n2 if len(n1.neighbors) != len(n2.neighbors): return False for i in range(len(n1.neighbors)): neighbor1 = n1.neighbors[i] neighbor2 = n2.neighbors[i] if neighbor1 in visited: if visited[neighbor1] != neighbor2: return False else: if not compareGraphs(neighbor1 neighbor2 visited): return False return True # Driver if __name__ == '__main__': original = buildGraph() cloned = cloneGraph(original) result = compareGraphs(original cloned {}) print('true' if result else 'false')
C# using System; using System.Collections.Generic; // Definition for a Node public class Node { public int val; public List<Node> neighbors; public Node() { neighbors = new List<Node>(); } public Node(int val) { this.val = val; neighbors = new List<Node>(); } } class GfG { // Clone the graph public static Node CloneGraph(Node node) { if (node == null) return null; var mp = new Dictionary<Node Node>(); var q = new Queue<Node>(); // Clone the starting node var clone = new Node(node.val); mp[node] = clone; q.Enqueue(node); while (q.Count > 0) { var current = q.Dequeue(); foreach (var neighbor in current.neighbors) { // If neighbor not cloned clone it and enqueue if (!mp.ContainsKey(neighbor)) { mp[neighbor] = new Node(neighbor.val); q.Enqueue(neighbor); } // Add clone of neighbor to clone of current mp[current].neighbors.Add(mp[neighbor]); } } return mp[node]; } // Build graph public static Node BuildGraph() { var node1 = new Node(0); var node2 = new Node(1); var node3 = new Node(2); var node4 = new Node(3); node1.neighbors.AddRange(new[] { node2 node3 }); node2.neighbors.AddRange(new[] { node1 node3 }); node3.neighbors.AddRange(new[] { node1 node2 node4 }); node4.neighbors.AddRange(new[] { node3 }); return node1; } // Compare two graphs for structure and value public static bool CompareGraphs(Node n1 Node n2 Dictionary<Node Node> visited) { if (n1 == null || n2 == null) return n1 == n2; if (n1.val != n2.val || ReferenceEquals(n1 n2)) return false; visited[n1] = n2; if (n1.neighbors.Count != n2.neighbors.Count) return false; for (int i = 0; i < n1.neighbors.Count; i++) { var neighbor1 = n1.neighbors[i]; var neighbor2 = n2.neighbors[i]; if (visited.ContainsKey(neighbor1)) { if (!ReferenceEquals(visited[neighbor1] neighbor2)) return false; } else { if (!CompareGraphs(neighbor1 neighbor2 visited)) return false; } } return true; } public static void Main() { var original = BuildGraph(); var cloned = CloneGraph(original); var visited = new Dictionary<Node Node>(); Console.WriteLine(CompareGraphs(original cloned visited) ? 'true' : 'false'); } }
JavaScript // Definition for a Node class Node { constructor(val = 0) { this.val = val; this.neighbors = []; } } // Clone the graph function cloneGraph(node) { if (!node) return null; const mp = new Map(); const q = [node]; // Clone the initial node mp.set(node new Node(node.val)); while (q.length > 0) { const current = q.shift(); for (const neighbor of current.neighbors) { if (!mp.has(neighbor)) { mp.set(neighbor new Node(neighbor.val)); q.push(neighbor); } // Link clone of neighbor to clone of current mp.get(current).neighbors.push(mp.get(neighbor)); } } return mp.get(node); } // Build graph function buildGraph() { const node1 = new Node(0); const node2 = new Node(1); const node3 = new Node(2); const node4 = new Node(3); node1.neighbors = [node2 node3]; node2.neighbors = [node1 node3]; node3.neighbors = [node1 node2 node4]; node4.neighbors = [node3]; return node1; } // Compare two graphs structurally and by value function compareGraphs(n1 n2 visited = new Map()) { if (!n1 || !n2) return n1 === n2; if (n1.val !== n2.val || n1 === n2) return false; visited.set(n1 n2); if (n1.neighbors.length !== n2.neighbors.length) return false; for (let i = 0; i < n1.neighbors.length; i++) { const neighbor1 = n1.neighbors[i]; const neighbor2 = n2.neighbors[i]; if (visited.has(neighbor1)) { if (visited.get(neighbor1) !== neighbor2) return false; } else { if (!compareGraphs(neighbor1 neighbor2 visited)) return false; } } return true; } // Driver const original = buildGraph(); const cloned = cloneGraph(original); const result = compareGraphs(original cloned); console.log(result ? 'true' : 'false');
Вихід
true
[Підхід 2] Використання обходу DFS - O(V+E) час і O(V) простір
C++In the DFS approach the graph is cloned using recursion. Ми починаємо з заданого вузла і досліджуємо, наскільки це можливо, уздовж кожної гілки, перш ніж повертатися назад. Карта (або словник) використовується для відстеження вже клонованих вузлів, щоб уникнути обробки одного і того ж вузла кілька разів і для обробки циклів. Коли ми вперше зустрічаємо вузол, ми створюємо його клон і зберігаємо його на карті. Потім для кожного сусіда цього вузла ми рекурсивно клонуємо його та додаємо клонованого сусіда до клону поточного вузла. Це гарантує, що всі вузли будуть глибоко відвідані перед поверненням, а структура графа точно скопійована.
#include #include #include #include using namespace std; // Definition for a Node struct Node { int val; vector<Node*> neighbors; }; // Map to hold original node to its copy unordered_map<Node* Node*> copies; // Function to clone the graph Node* cloneGraph(Node* node) { // If the node is NULL return NULL if (!node) return NULL; // If node is not yet cloned clone it if (copies.find(node) == copies.end()) { Node* clone = new Node(); clone->val = node->val; copies[node] = clone; // Recursively clone neighbors for (Node* neighbor : node->neighbors) { clone->neighbors.push_back(cloneGraph(neighbor)); } } // Return the clone return copies[node]; } // Build graph Node* buildGraph() { Node* node1 = new Node(); node1->val = 0; Node* node2 = new Node(); node2->val = 1; Node* node3 = new Node(); node3->val = 2; Node* node4 = new Node(); node4->val = 3; node1->neighbors = {node2 node3}; node2->neighbors = {node1 node3}; node3->neighbors = {node1node2 node4}; node4->neighbors = {node3}; return node1; } // Compare two graphs for structural and value equality bool compareGraphs(Node* node1 Node* node2 map<Node* Node*>& visited) { if (!node1 || !node2) return node1 == node2; if (node1->val != node2->val || node1 == node2) return false; visited[node1] = node2; if (node1->neighbors.size() != node2->neighbors.size()) return false; for (size_t i = 0; i < node1->neighbors.size(); ++i) { Node* n1 = node1->neighbors[i]; Node* n2 = node2->neighbors[i]; if (visited.count(n1)) { if (visited[n1] != n2) return false; } else { if (!compareGraphs(n1 n2 visited)) return false; } } return true; } // Driver Code int main() { Node* original = buildGraph(); // Clone the graph Node* cloned = cloneGraph(original); // Compare original and cloned graph map<Node* Node*> visited; cout << (compareGraphs(original cloned visited) ? 'true' : 'false') << endl; return 0; }
Java import java.util.*; // Definition for a Node class Node { int val; ArrayList<Node> neighbors; Node() { neighbors = new ArrayList<>(); } Node(int val) { this.val = val; neighbors = new ArrayList<>(); } } public class GfG { // Map to hold original node to its copy static HashMap<Node Node> copies = new HashMap<>(); // Function to clone the graph using DFS public static Node cloneGraph(Node node) { // If the node is NULL return NULL if (node == null) return null; // If node is not yet cloned clone it if (!copies.containsKey(node)) { Node clone = new Node(node.val); copies.put(node clone); // Recursively clone neighbors for (Node neighbor : node.neighbors) { clone.neighbors.add(cloneGraph(neighbor)); } } // Return the clone return copies.get(node); } // Build graph public static Node buildGraph() { Node node1 = new Node(0); Node node2 = new Node(1); Node node3 = new Node(2); Node node4 = new Node(3); node1.neighbors.addAll(Arrays.asList(node2 node3)); node2.neighbors.addAll(Arrays.asList(node1 node3)); node3.neighbors.addAll(Arrays.asList(node1node2 node4)); node4.neighbors.addAll(Arrays.asList(node3)); return node1; } // Compare two graphs for structural and value equality public static boolean compareGraphs(Node node1 Node node2 HashMap<Node Node> visited) { if (node1 == null || node2 == null) return node1 == node2; if (node1.val != node2.val || node1 == node2) return false; visited.put(node1 node2); if (node1.neighbors.size() != node2.neighbors.size()) return false; for (int i = 0; i < node1.neighbors.size(); i++) { Node n1 = node1.neighbors.get(i); Node n2 = node2.neighbors.get(i); if (visited.containsKey(n1)) { if (visited.get(n1) != n2) return false; } else { if (!compareGraphs(n1 n2 visited)) return false; } } return true; } // Driver Code public static void main(String[] args) { Node original = buildGraph(); // Clone the graph Node cloned = cloneGraph(original); // Compare original and cloned graph boolean result = compareGraphs(original cloned new HashMap<>()); System.out.println(result ? 'true' : 'false'); } }
Python # Definition for a Node class Node: def __init__(self val=0 neighbors=None): self.val = val self.neighbors = neighbors if neighbors is not None else [] # Map to hold original node to its copy copies = {} # Function to clone the graph def cloneGraph(node): # If the node is None return None if not node: return None # If node is not yet cloned clone it if node not in copies: # Create a clone of the node clone = Node(node.val) copies[node] = clone # Recursively clone neighbors for neighbor in node.neighbors: clone.neighbors.append(cloneGraph(neighbor)) # Return the clone return copies[node] def buildGraph(): node1 = Node(0) node2 = Node(1) node3 = Node(2) node4 = Node(3) node1.neighbors = [node2 node3] node2.neighbors = [node1 node3] node3.neighbors = [node1 node2 node4] node4.neighbors = [node3] return node1 # Compare two graphs for structural and value equality def compareGraphs(node1 node2 visited): if not node1 or not node2: return node1 == node2 if node1.val != node2.val or node1 is node2: return False visited[node1] = node2 if len(node1.neighbors) != len(node2.neighbors): return False for i in range(len(node1.neighbors)): n1 = node1.neighbors[i] n2 = node2.neighbors[i] if n1 in visited: if visited[n1] != n2: return False else: if not compareGraphs(n1 n2 visited): return False return True # Driver Code if __name__ == '__main__': original = buildGraph() # Clone the graph using DFS cloned = cloneGraph(original) # Compare original and cloned graph visited = {} print('true' if compareGraphs(original cloned visited) else 'false')
C# using System; using System.Collections.Generic; public class Node { public int val; public List<Node> neighbors; public Node() { val = 0; neighbors = new List<Node>(); } public Node(int _val) { val = _val; neighbors = new List<Node>(); } } class GfG { // Dictionary to hold original node to its copy static Dictionary<Node Node> copies = new Dictionary<Node Node>(); // Function to clone the graph using DFS public static Node CloneGraph(Node node) { // If the node is NULL return NULL if (node == null) return null; // If node is not yet cloned clone it if (!copies.ContainsKey(node)) { Node clone = new Node(node.val); copies[node] = clone; // Recursively clone neighbors foreach (Node neighbor in node.neighbors) { clone.neighbors.Add(CloneGraph(neighbor)); } } // Return the clone return copies[node]; } // Build graph public static Node BuildGraph() { Node node1 = new Node(0); Node node2 = new Node(1); Node node3 = new Node(2); Node node4 = new Node(3); node1.neighbors.Add(node2); node1.neighbors.Add(node3); node2.neighbors.Add(node1); node2.neighbors.Add(node3); node3.neighbors.Add(node1); node3.neighbors.Add(node2); node3.neighbors.Add(node4); node4.neighbors.Add(node3); return node1; } // Compare two graphs for structural and value equality public static bool CompareGraphs(Node node1 Node node2 Dictionary<Node Node> visited) { if (node1 == null || node2 == null) return node1 == node2; if (node1.val != node2.val || node1 == node2) return false; visited[node1] = node2; if (node1.neighbors.Count != node2.neighbors.Count) return false; for (int i = 0; i < node1.neighbors.Count; i++) { Node n1 = node1.neighbors[i]; Node n2 = node2.neighbors[i]; if (visited.ContainsKey(n1)) { if (visited[n1] != n2) return false; } else { if (!CompareGraphs(n1 n2 visited)) return false; } } return true; } // Driver Code public static void Main() { Node original = BuildGraph(); // Clone the graph using DFS Node cloned = CloneGraph(original); // Compare original and cloned graph bool isEqual = CompareGraphs(original cloned new Dictionary<Node Node>()); Console.WriteLine(isEqual ? 'true' : 'false'); } }
JavaScript // Definition for a Node class Node { constructor(val = 0) { this.val = val; this.neighbors = []; } } // Map to hold original node to its copy const copies = new Map(); // Function to clone the graph using DFS function cloneGraph(node) { // If the node is NULL return NULL if (node === null) return null; // If node is not yet cloned clone it if (!copies.has(node)) { const clone = new Node(node.val); copies.set(node clone); // Recursively clone neighbors for (let neighbor of node.neighbors) { clone.neighbors.push(cloneGraph(neighbor)); } } // Return the clone return copies.get(node); } // Build graph function buildGraph() { const node1 = new Node(0); const node2 = new Node(1); const node3 = new Node(2); const node4 = new Node(3); node1.neighbors.push(node2 node3); node2.neighbors.push(node1 node3); node3.neighbors.push(node1 node2 node4); node4.neighbors.push(node3); return node1; } // Compare two graphs for structural and value equality function compareGraphs(node1 node2 visited = new Map()) { if (!node1 || !node2) return node1 === node2; if (node1.val !== node2.val || node1 === node2) return false; visited.set(node1 node2); if (node1.neighbors.length !== node2.neighbors.length) return false; for (let i = 0; i < node1.neighbors.length; i++) { const n1 = node1.neighbors[i]; const n2 = node2.neighbors[i]; if (visited.has(n1)) { if (visited.get(n1) !== n2) return false; } else { if (!compareGraphs(n1 n2 visited)) return false; } } return true; } // Driver Code const original = buildGraph(); // Clone the graph using DFS const cloned = cloneGraph(original); // Compare original and cloned graph console.log(compareGraphs(original cloned) ? 'true' : 'false');
Вихід
true
